Lagrangian averaging with geodesic mean.

نویسنده

  • Marcel Oliver
چکیده

This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler-α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Lagrangian Submanifolds in Complex Space Forms

In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

متن کامل

NO : 21 TITLE : ‘ MINIMAL LAGRANGIAN SUBMANIFOLDS VIA THE GEODESIC GAUSS MAP ’ AUTHOR ( S ) : Dr

For an oriented isometric immersion f : M → S the spherical Gauss map is the Legendrian immersion of its unit normal bundle UM⊥ into the unit sphere subbundle of TS, and the geodesic Gauss map γ projects this into the manifold of oriented geodesics in S (the Grassmannian of oriented 2-planes in R), giving a Lagrangian immersion of UM⊥ into a Kähler-Einstein manifold. We give expressions for the...

متن کامل

Se p 20 02 Gauss Maps of the Mean Curvature Flow

Let F : Σ n × [0, T) → R n+m be a family of compact immersed sub-manifolds moving by their mean curvature vector. We show the Gauss maps γ : (Σ n , g t) → G(n, m) form a harmonic heat flow with respect to the time-dependent induced metric g t. This provides a more systematic approach to investigate higher codimension mean curvature flows. A direct consequence is any convex function on G(n, m) p...

متن کامل

Gauss Maps of the Mean Curvature Flow

Let F : Σ n × [0, T) → R n+m be a family of compact immersed submanifolds moving by their mean curvature vectors. We show the Gauss maps γ : (Σ n , g t) → G(n, m) form a harmonic heat flow with respect to the time-dependent induced metric g t. This provides a more systematic approach to investigating higher codimension mean curvature flows. A direct consequence is any convex function on G(n, m)...

متن کامل

Averaged Lagrangians and the mean dynamical effects of fluctuations in continuum mechanics

We begin by placing the Generalized Lagrangian Mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincaré (EP) variational framework of fluid dynamics, for an averaged Lagrangian. We then state the EP Averaging Lemma – that GLM averaged equations arise from GLM averaged Lagrangians in the EP framework. Next, we derive a set of approximate small amplitude GLM equations (glm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Mathematical, physical, and engineering sciences

دوره 473 2207  شماره 

صفحات  -

تاریخ انتشار 2017